从广义上讲:如果一件事物能随着另一件事物的改变而改变,那么此事物就是另一件事物的模型。模型的作用就是表达不同概念的性质,一个概念可以使很多模型发生不同程度的改变,但只要很少模型就能表达出一个概念的性质,所以一个概念可以通过参考不同的模型从而改变性质的表达形式。
当模型与事物发生联系时会产生一个具有性质的框架,此性质决定模型怎样随事物变化
数学模型
用数学语言描述的一类模型。数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
也称实体模型,又可分为实物模型和类比模型。
①实物模型:根据相似性理论制造的按原系统比例缩小(也可以是放大或与原系统尺寸一样)的实物,例如风洞实验中的飞机模型,水力系统实验模型,建筑模型,船舶模型等。
航天模型
航天模型(5张)
②类比模型:在不同的物理学领域(力学的、电学的、热学的、流体力学的等)的系统中各自的变量有时服从相同的规律,根据这个共同规律可以制出物理意义完全不同的比拟和类推的模型。例如在一定条件下由节流阀和气容构成的气动系统的压力响应与一个由电阻和电容所构成的电路的输出电压
思维模型
用简单易懂的图形、符号、结构化语言等表达人们思考和解决问题形式,统称为思维模型。